Enzyme Specificity

• Problem:
 – Assume catalytic machinery of an active site has been assembled
 • *de novo* design
 • reuse of biological active sites
 – How can activity/binding towards various substrates be optimized?
Enzyme Specificity & Backbone Flexibility

• Motif-based design
 – single residue
 – large contribution to ΔG_b
 – highly constrained

• Backbone flexibility greatly expands conformation space
 – better solutions
 – larger search space
 • How to search?

Crystal structure of bCD + TS analog
Enzyme Specificity & Backbone Flexibility

• How to search?

• Target-rich environment (eg. DNA interface)
 – Model many loops
 – Filter for motif-satisfaction

• Target-poor environment (eg. This problem?)
 – Model desired interaction
 – Work backwards to find loops that host the given interaction
Implementation in Mini

• How to code this type of search?
 – fold/atom-tree
 – multiple poses
 – loop closure algorithms
Impl. in Mini: *Fold/Atom-Tree*

- Atom tree structure lets us search subspace with specific interaction
 - important to validate solutions outside of this subspace
Atom tree structure lets us search subspace with specific interaction
- important to validate solutions outside of this subspace
Atom tree structure lets us search subspace with specific interaction
 - important to validate solutions outside of this subspace
• Many available algorithms solve generic problem of closing chainbreaks
 – this search protocol is reasonable relative to other ways of imposing constraints
Impl. in Mini: *Multiple Poses*

- Several poses are used during search
 - Derive ligand:residue jump
 - Kinematics from a full-atom pose
 - Trimmed pose speeds scoring *
 - Score from a centroid pose *
 - needed for lo-res search phase
 - kinematically synced w/ full atom pose
Prediction Performance

• Can we recover
 – Native structure?
 – Native sequence?
 – Native loop length?

• Benchmark
 – Set of enzyme:ligand complexes from PDB
 – Low calculated hbond energy between single residue and ligand
 • stronger argument about precision of designs
Prediction Performance - 2of1

DKYGRGLAY
DAARAAAAAY
DAARAAAY
DAAAARAAY
DAAAARAAAAAY
Prediction Performance - 1gua

GSKCDLEDE
GAAADAAAE
GAADAAAE
GAAAADAAAE
GAAAAADAAAAAE
Prediction Performance - 2jfg

HNYTNALAA
HAAANAAAA
HAANAAAAA
HAAAANAAAAA
HAAAANAAAAAA
Design Performance

• Can we transplant sc:ligand interactions into a new scaffold by altering bb conformation?
hGDA => hCD

- Towards a human cytosine deaminase (hCD)
 - Alter the specificity of human guanine deaminase (hGDA)
hGDA=>hCD - *Design*

- **Protocol**
 - Superimpose new TS structure
 - Use sc:ligand interaction from bCD
 - Design loop as described
hGDA=>hCD - Design

- Results
 - Asn, 2 res del
 - RFSLSC=>GNGV

Designs of hGDA + uracil using interaction from bCD
Ammelide
• stepping stone from G to C
• no bAD *

(cf 2-sided design)
hGDA=>hCD - AD Activity
hGDA => hCD - AD Activity
hGDA=>hCD - AD Activity
hGDA\RightarrowhCD - *AD Activity*
hGDA=>hCD - *AD Activity*

\[\text{kcat/Km} = 0.15 \text{ s}^{-1} \text{ M}^{-1} \]
hGDA=>hCD - AD Activity

• Biochemical results consistent with structural model, except…
• Why such low kcat/Km?
 – incorrect modeling in mini?
 • need xtal structure to determine this
hGDA=>hCD - Structure

- Crystallography
 - Jill Bolduc
 - Barry Stoddard
 - Lei Zhou
- Resolution=2.4 Å
- Phaser_MR
 - search template: 2uz9 w/ loops omitted
- $R_{\text{work}}=0.22$
- $R_{\text{free}}=0.26$
hGDA=>hCD - Structure

- Ca-RMSD
 - Overall=0.82 A
 - Loop=0.93 A
 - Lid=2.7 A
- Apo structure
 - No e ≡ for
 - Ligand
 - Asn214.sc
- Active site
 - same conformation
 - zinc present

\[mesh=e \; \text{≡ from MR, cyan}=\text{final structure}\]
hGDA=>hCD - Structure

• Ca-RMSD
 – Overall=0.82 Å
 – Loop=0.93 Å
 – Lid=2.7 Å
• Apo structure
 – No e density for
 • Ligand
 • Asn214.sc
• Active site
 – same conformation
 – zinc present

mesh e density from MR, *cyan* = final structure, *yellow* = model of design,
hGDA=>hCD - **Structure**

- **Ca-RMSD**
 - Overall=0.82 Å
 - Loop=0.93 Å
 - Lid=2.7 Å

- **Apo structure**
 - No e ś for
 - Ligand
 - Asn214.sc

- **Active site**
 - same conformation
 - zinc present

yellow=model of design, *cyan*=xtal of design, *slateblue*=xtal of wt
hGDA=>hCD - past/future directions

• Ammelide Deamination
 – fill hole left by deletion?
 – pre-order Asn214?
 – other loops?
 – 2nd/nth shell mutations?

• Cytosine Deamination
 – other face of the active site
 – random mutagenesis…

• Application to de novo active sites
hGDA=>hCD - Conclusions

- Modeling in mini
 - Structurally accurate to < 1 Å
 - Functionally incomplete?
 - sequence => structure => function
Acknowledgements

• David
• Phil, ALF, Ian, Bqian, mini
• Siegel, Jasmine
• Jill Bolduc, Lei Zhou, Barry Stoddard